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SUMMARY

Numerical solution of �ows that are partially bounded by a freely moving boundary is of great impor-
tance in practical applications such as ship hydrodynamics. Free-boundary problems can be reformulated
into optimal shape design problems, which can in principle be solved e�ciently by the adjoint method.
In this work we investigate the suitability of the adjoint shape optimization method for solving steady
free-surface �ows. The asymptotic convergence behaviour of the method is determined for free-surface
�ows in 2D and 3D. It is shown that the convergence behaviour depends sensitively on the occurrence of
critical modes. The convergence behaviour is moreover shown to be mesh-width independent, provided
that proper preconditioning is applied. Numerical results are presented for 2D �ow over an obstacle
in a channel. The observed convergence behaviour is indeed mesh-width independent and conform the
derived asymptotic estimates. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of �ows which are partially bounded by a freely moving boundary is of
great importance in many engineering applications, e.g. ship hydrodynamics [1–3], hydraulics
and coating technology [4, 5]. A practically relevant class of free-surface �ow problems are
steady free-surface �ows. An example of such a steady free-surface �ow is the wave pattern
carried by a ship at forward speed in still water. The numerical techniques for free-surface
potential �ow are well developed; for an overview, see Reference [6]. In particular, dedicated
techniques have been developed for solving the steady free-surface potential-�ow equations,
e.g. Reference [7]. In contrast, methods for the steady free-surface Navier–Stokes equations
typically continue a transient process until a steady state is reached. This time-integration
method is often computationally ine�cient, due to the speci�c transient behaviour of
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free-surface �ows; see References [8, 9]. Alternative solution methods for the steady free-
surface Navier–Stokes equations exist. However, the performance of these methods usually
depends sensitively on the parameters in the problem, or their applicability is too restricted;
see, for instance, References [4, 10]. In Reference [8], an e�cient iterative algorithm was
presented. However, the implementation of the quasi-free-surface condition that underlies the
e�ciency of this method can be involved. Hence, the investigation of numerical methods for
the steady free-surface Navier–Stokes equations is warranted.
A general characteristic of free-boundary problems is that the number of free-boundary

conditions is one more than the number of boundary conditions required by the governing
boundary value problem. A free-boundary problem can therefore be reformulated into the
equivalent shape optimization problem of �nding the boundary that minimizes a norm of
the residual of one of the free-surface conditions, subject to the boundary value problem with
the remaining free-surface conditions imposed.
Optimal shape design problems can in principle be solved e�ciently by means of the adjoint

method. In recent years, much progress has been made in the development of adjoint tech-
niques for problems from �uid dynamics. Applications to the Navier–Stokes equations include
�ow control (see Reference [11] and the references therein), a posteriori error-estimation and
adaptivity (for instance, Reference [12]), optimal design (e.g. References [13, 14]) and do-
main decomposition (cf. Reference [15]). The techniques that are required to solve the optimal
shape design problem associated with steady free-surface �ow are readily available.
The present work investigates the suitability of the adjoint shape optimization method for

solving steady free-surface �ow problems. Our primary interest is in the steady free-surface
Navier–Stokes equations. However, because inviscid, irrotational �ow adequately describes the
prominent features of free-surface �ow and to avoid the excessive complexity of the Navier–
Stokes equations, we base our investigation on the free-surface potential-�ow equations. It is
anticipated that the adjoint shape optimization method is equally applicable to the free-surface
Navier–Stokes equations, although the speci�cs of the method are much more involved in
that case. Our investigation serves as an indication of the properties of the adjoint shape
optimization method for steady free-surface �ow problems.
The contents of the paper are organized as follows: In Section 2 the equations governing

steady free-surface potential �ow and the associated design problem are stated. Section 3 for-
mulates the adjoint equations and sets up the adjoint optimization method. Section 4 presents
an analysis of the properties of the optimization problem and the convergence behaviour of
the adjoint method, using Fourier techniques from Reference [16]. Motivated by the results of
the Fourier analysis, we describe a preconditioning for the optimization problem in Section 5.
Numerical experiments and results are presented in Section 6. Section 7 contains concluding
remarks.

2. PROBLEM STATEMENT

We consider an incompressible, inviscid �uid �ow, subject to a constant gravitational force,
acting in the negative vertical direction. The �uid occupies a domain V⊂Rd (d=2; 3) which
is bounded by a free boundary, S, and a �xed boundary @V\S. The �xed boundary can be
subdivided in an in�ow boundary, an out�ow boundary and a rigid, impermeable boundary.
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ADJOINT SHAPE OPTIMIZATION FOR STEADY FREE-SURFACE FLOWS 5

2.1. Governing equations

The (non-dimensionalized) �uid velocity and pressure are identi�ed by v(x) and p(x), respec-
tively. Assuming that the velocity-�eld is irrotational, a velocity-potential �(x) exists such
that v=∇�. Enforcing incompressibility then yields that the velocity-potential is governed by
Laplace’s equation,

��=0; x∈V (1)

Assuming that |∇�|=1 at the in�ow boundary, Bernoulli’s equation relates the pressure to
the velocity-potential by

p(x)= 1
2 − ( 12 |∇�|2 + Fr−2xd) (2)

with xd the vertical co-ordinate and Fr the Froude number, de�ned by Fr≡V=
√
gL with V an

appropriate reference velocity, g the gravitational acceleration and L a reference length.
The free-surface conditions prescribe that the free surface is impermeable and that the

pressure vanishes at the free surface:

n ·∇�=0; x∈S (3a)

p=0; x∈S (3b)

with n(x) the unit normal vector to S. Conditions (3a) and (3b) are referred to as the
kinematic condition and the dynamic condition, respectively. A single appropriate bound-
ary condition must be speci�ed at the �xed boundary. We assume that this condition is of
the form

an ·∇�+ b�= c; x∈@V\S (4)

for certain functions a; b; c : @V\S �→R.
The steady free-surface �ow problem under consideration is the problem of �nding S and

� such that � satis�es (1)–(4). However, this problem is not necessarily well-posed. Firstly,
solutions can be non-unique due to the occurrence of arbitrary non-physical upstream waves.
To remove these waves, a radiation condition must be imposed; cf., for instance, References
[17–19]. In numerical computations, this radiation condition can be conveniently enforced by
introducing arti�cial damping (see Section 6) or by selecting a suitable discretization (see,
e.g. Reference [7]). Secondly, a steady solution can be non-existent, in the sense that the
transient problem underlying (1)–(4) does not approach a steady state as time progresses ad
in�nitum; see, for instance, Reference [9].

2.2. Optimal shape design formulation

One may note that the number of free-surface conditions (3) is one more than the number of
boundary conditions required by (1). The free-boundary problem can therefore be reformulated
into the equivalent optimal-shape design problem of �nding the boundary that minimizes a
norm of the residual of one of the free-surface conditions, subject to the boundary value
problem with the remaining free-surface conditions imposed.
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To obtain an optimal-shape design formulation of the steady free-surface �ow problem, the
cost functional E is de�ned by

E(S; �)=
∫
S

1
2 p(x)

2 dx (5)

and the constraint C is de�ned by the boundary value problem (1), (3a) and (4):

C(S; �)=




��=0; x∈V

n ·∇�=0; x∈S

a n ·∇�+ b�= c; x∈@V\S
(6)

Note that the cost functional is a norm of the residual of the dynamic condition (3b) and
that the kinematic condition (3a) appears in the constraint. The free-surface �ow problem is
equivalent to the optimal shape design problem

min
S

{E(S; �) :C(S; �)} (7)

i.e. minimize (5) over all S, subject to the constraint that � satis�es (6). Because the boundary
value problem (6) associates a unique � with each free boundary S, it is often convenient
to use the notation E(S) for E(S; �) with � from (6).

3. ADJOINT OPTIMIZATION METHOD

Shape-optimization problems can in principle be solved e�ciently by means of the adjoint
optimization method. The essential problem in treating shape-optimization problems is that
a displacement of the free boundary induces a disturbance in the solution of the boundary
value problem and, consequently, it is attended with an induced change in the cost functional.
E�cient solution of a shape-optimization problem requires control over the induced change in
the cost functional. The adjoint optimization method eliminates the induced change by means
of the solution of a dual problem. Upon elimination of the induced change, the gradient of
the cost functional with respect to the free-boundary position is obtained. Improvement of the
free-boundary position is then straightforward. This section outlines the adjoint optimization
method for solving (7).

3.1. Induced disturbance

To formulate the adjoint optimization method for (7), the induced disturbance in the solution
of the constraint and the corresponding change in the cost functional must �rst be identi�ed.
To this end, we consider a domain V with free boundary S and a modi�ed domain V�� with
free boundary

S��= {x+ ��(x)n(x): x∈S} (8)

where � is a smooth function on S, independent of �. Following [20], V and V�� are embedded
in a bounded set E and it is assumed that a solution of the constraint can be extended smoothly
beyond the boundary, so that it is well de�ned in E. Denoting by � the solution of C(S; �)
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and by ��� the solution of C(S��; ���), we de�ne the induced disturbance by the function
�′
� :E �→ R with the property

���=�+ ��′
� +O(�2); as �→ 0 (9)

i.e. ��′
� approximates to O(�2) the change in the solution of the constraint (6) due to the

displacement of the free boundary from S to S��. The kinematic condition corresponding to
the modi�ed boundary yields:

[n�� ·∇���](x+ ��(x)n(x))

=

[(
n − �

d−1∑
j=1
(tj ·∇�)tj +O(�2)

)
· (∇�+ �∇�′

� + ��n ·∇∇�+O(�2))

]
(x)

=0; x∈S (10)

with n�� the unit normal vector to S�� and tj orthogonal tangent vectors to S. Hence,
inserting (9) in C(S��; ���) and collecting terms O(�), it follows that the induced disturbance
satis�es the boundary value problem:

��′
� =0; x∈V (11a)

n ·∇�′
� =−�nn :∇∇�+

d−1∑
j=1
(tj ·∇�) (tj ·∇�); x∈S (11b)

an ·∇�′
� + b�′

� =0; x∈@V\S (11c)

To identify the induced change in the cost functional, the functional value corresponding
to the modi�ed boundary, E(S��), is expanded as

E(S��)≡E(S��; ���)=E(S) + � (I ′�(S) + J ′
�(S)) +O(�2); as �→ 0 (12a)

with

I ′�(S) =−
∫
S

p∇� ·∇�′
�dx (12b)

J ′
�(S) =−

∫
S

�
(
p2

2R
+ p n ·∇ 1

2 |∇�|2 + p Fr−2n · ed
)
dx (12c)

where R(x) is the radius of curvature (d=2) or mean radius of curvature (d=3) and ed is the
vertical unit vector. The curvature-term in (12c) results from the change in the surface area
from S to S��; see, e.g. Reference [20]. Noting that only (12b) depends on �′

�, the induced
change in the cost functional is readily identi�ed as (12b). Integration by parts recasts (12b)
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into the convenient form:

I ′�(S)=
∫
S

�′
�

d−1∑
j=1
tj ·∇(p tj ·∇�) dx (13a)

Moreover, the second term in (12c) vanishes due to the kinematic condition (3a):

J ′
�(S)=−

∫
S

�
(
p2

2R
+ p Fr−2n · ed

)
dx (13b)

If �(x) is chosen such that I ′� + J ′
�¡0, an adjustment of the free boundary from S to S��,

with � a small positive number, results in a reduction of the cost functional and thus improves
the approximation to the actual free-boundary position. Such a choice of � is called a descent
direction.

3.2. Adjoint operators and duality

The inherent problem in determining a descent direction from (13), is the dependence of
(13a) on �′

�, which is connected to � through the boundary value problem (11). Equations
(11) and (13) are useful to verify if a particular � is a descent direction. However, they are
inept to determine a descent direction.
The adjoint optimization method uses the equivalence of (11), (13a) to its dual problem

to eliminate the induced change in the functional. To de�ne the duality property, adjoint
operators must be introduced. Let (·; ·)V and (·; ·)@V denote the L2 integral inner products
over the domain V and its boundary @V, respectively. Consider the linear boundary value
problem:

Li(�) = li; x∈V (14a)
Lb(�) = lb; x∈@V (14b)

and the functional

I =(fi; Fi(�))V + (fb; Fb(�))@V (15)

for certain interior operators Li; Fi and boundary operators Lb; Fb. The adjoint operators L∗
i ; F

∗
i

and adjoint boundary operators L∗
b ; F

∗
b are de�ned by the identity

(L∗
i (�); Fi(�))V + (L∗

b(�); Fb(�))@V=(F∗
i (�); Li(�))V + (F∗

b (�); Lb(�))@V (16)

for all appropriate functions � and �. For example, if

Li(�)=��; Lb(�)= an ·∇�+ b�; Fi(�)=�; Fb(�)= an ·∇�+ b� (17a)

for certain functions a; b; a; b : @V �→ R such that ba− ab �=0, then

L∗
i (�)=Li(�); L∗

b(�)=
Lb(�)

ba− ab
; F∗

i (�)=Fi(�); F∗
b (�)=

Fb(�)
ba− ab

(17b)
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To prove that (17a) and (17b) indeed satisfy the identity (16):

(L∗
i (�); Fi(�))V + (L∗

b(�); Fb(�))@V

=
∫
V

��� dx+
∮
@V

(
an ·∇�+ b�

ba− ab

)
(an ·∇�+ b�)dx

=
∫
V

��� dx+
∮
@V
(� n ·∇�− � n ·∇�) dx+

∮
@V

(
an ·∇�+ b�

ba− ab

)
(an ·∇�+ b�) dx

=
∫
V

��� dx+
∮
@V

(
an ·∇�+ b�

ba− ab

)
(an ·∇�+ b�) dx

= (F∗
i (�); Li(�))V + (F∗

b (�); Lb(�))@V

From the identity (16) it follows that (15) subject to (14) is equivalent to

I =(li; F∗
i (�))V + (lb; F

∗
b (�))@V (18)

subject to

L∗
i (�) =fi; x∈V (19a)

L∗
b(�) =fb; x∈@V (19b)

To prove the equivalence:

I =(fi; Fi(�))V + (fb; Fb(�))@V = (L∗
i (�); Fi(�))V + (L∗

b(�); Fb(�))@V

= (F∗
i (�); Li(�))V + (F∗

b (�); Lb(�))@V

= (F∗
i (�); li)V + (F

∗
b (�); lb)@V (20)

In this context, (14)–(15) is called the primal problem and (18)–(19) is called the dual
problem. Duality is the equivalence of the primal and dual problem.
The adjoint optimization method uses duality to eliminate the induced change in the cost

functional (13a). Observe that for given �, the functional (13a) is the L2 inner product of �′
�

with a given function and (11) acts as a constraint on �′
�. Hence, (13a) subject to (11) is of

the form (14)–(15). To obtain the dual problem for (11)–(13a), we note that (11) implies

∫
V

���′
�dx+

∫
S

 n ·∇�′
� dx+

∫
S

 

(
� nn :∇∇�−

d−1∑
j=1
(tj ·∇�) (tj ·∇�)

)
dx

+
∫
@V\S

 (a n ·∇�′
� + b�′

�) dx=0 (21)
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for all admissible functions � :V �→R and  : @V �→R. The operator nn :∇∇ in (21) repre-
sents the second derivative in the normal direction. Integrating by parts, (21) can be recast into

∫
V

�′
��� dx −

∫
S

�′
�n ·∇� dx+

∫
S

�

(
 nn :∇∇�+

d−1∑
j=1
tj ·∇( tj ·∇�)

)
dx

+
∫
S

(�+  ) n ·∇�′
� dx+

∫
@V\S

(b  − n ·∇�)�′
� + (a  + �) n ·∇�′

� dx=0 (22)

Hence, if  in (22) is set to

 (x)=



−�(x); x∈S

−�(x)=a(x); x∈@V\S; a(x) �=0
n ·∇�(x)=b(x); x∈@V\S; otherwise

and if � satis�es the dual problem

��=0; x∈V (23a)

n ·∇�=
d−1∑
j=1
tj ·∇(p tj ·∇�); x∈S (23b)

a n ·∇�+ b�=0; x∈@V\S (23c)

then

I ′�(S)=−
∫
S

�

(
� nn :∇∇�+

d−1∑
j=1
tj ·∇(� tj ·∇�)

)
dx (24)

One may note that (24) expresses the induced change in the functional independent of the
induced disturbance in the solution.

3.3. Optimization method

Due to the absence of the induced disturbance in (24), a descent direction for � can be
determined from (13b) and (24) in a straightforward manner. For this purpose, we de�ne the
gradient of E with respect to S by the function grad E(S) :S �→R with the property:∫

S

�(x)grad E(S)(x) dx= lim
�→0

1
�
[E(S��)− E(S)] (25)

for all suitable �. By (12), (13) and (24), the gradient is readily identi�ed as

grad E(S)=−� nn :∇∇�−
d−1∑
j=1
tj ·∇(� tj ·∇�)− p2

2R
− p Fr−2n · ed (26)
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From (25) it follows that if �=−grad E(S) and � is set to a small positive number,
then

E(S��)− E(S)=−�
∫
S

(grad E(S))2 dx+O(�2)60 +O(�2) (27)

Therefore, �=−grad E(S) is a descent direction and S�� improves on S. The free-surface
�ow problem can thus be solved by repeating the following operations:

(A1) For given S, solve the primal problem (6) for �.
(A2) Solve the dual problem (23) for �.
(A3) Determine �=−grad E(S) from (26).
(A4) Choose the step size �¿0 and adjust S to S��.

The iterative process (A1)–(A4) is called the adjoint optimization method. The actual free
boundary S∗ is obtained if grad E(S∗)=0.
The condition grad E(S∗)=0 only ensures that a local minimum is attained. If the cost

functional is non-convex, then multiple local minima can occur. The actual solution to the
steady free-surface �ow problem is then determined by the global minimum. The dynamic
condition (3b) implies that the cost functional vanishes for the actual solution. Hence, the
correct minimum is identi�able. If the cost functional is indeed non-convex, then it is im-
portant that the adjoint optimization method is provided with an initial approximation that
is su�ciently close to the actual solution. A prolongated coarse-grid approximation to the
solution can serve for this purpose.

4. FOURIER ANALYSIS OF THE OPTIMIZATION PROBLEM

The behaviour of the cost functional in the neighbourhood of a minimum is characterized by
the Hessian, i.e. the second derivative of the cost functional with respect to the free boundary.
As a result, the properties of the optimization problem and the convergence behaviour of the
adjoint optimization method depend on the characteristics of the Hessian. In this section we use
Fourier techniques to examine the properties of the Hessian and we consider the implications
for the solution behaviour and the posedness of the optimal shape design problem and the
convergence behaviour of the adjoint method.

4.1. Hessian of the functional

The behaviour of the cost functional in the neighbourhood of a minimum is characterized by
its Hessian, which is de�ned by the function grad2 E(S) :S×S �→R with the property:

∫
S

�(y)grad E(S)(x; y) dy= lim
�→0

1
�
[grad E(S��)(x)− grad E(S)(x)] (28)

for all suitable �. To show that the properties of the optimization problem are
essentially contained in the Hessian, we consider the following expansion of the cost

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:3–27



12 E. H. VAN BRUMMELEN AND A. SEGAL

functional:

E(S��) = E(S) + �
∫
S

�(x)grad E(S)(x) dx

+
�2

2

∫
S

∫
S

�(x)�(y)grad2 E(S)(x; y) dy dx+O(�3); as �→ 0 (29)

Clearly, in order to have a minimum, the gradient must vanish, so that indeed the Hessian
determines the behaviour of the cost functional in the neighbourhood of a minimum.
To demonstrate that the Hessian determines the convergence behaviour of the adjoint

optimization method, we consider a perturbation S∗
�� of the optimal boundary S∗. Because

grad E(S∗)=0, it follows from (28) that for su�ciently small �,

grad E(S∗
�� )(x)= �

∫
S

�(y)grad2E(S∗)(x; y) dy+O(�2) (30)

This implies that in the neighbourhood of the optimum, the Hessian relates the gradient to
the disturbance in the free-boundary position. Because the adjoint method uses the gradient
to adjust the free boundary, the Hessian determines the change in the error in the boundary
position. Hence, the Hessian indeed determines the convergence behaviour of the adjoint
optimization method.

4.2. Fourier analysis of the Hessian

The properties of the Hessian can be conveniently examined by means of the Fourier analysis
for optimization problems presented in Reference [16]. We perform the analysis for the spe-
ci�c case of a domain V∗= {x∈Rd: −1¡xd¡0} with free boundary S∗= {x∈Rd: xd=0}
and �xed boundary @V∗\S∗= {x∈Rd : xd=−1}. Recall that xd is the vertical co-ordinate.
Assuming that the �xed boundary is impermeable, a in (6) is set to 1 and b and c are set
to 0. The uniform horizontal �ow potential �∗=U ·x, with U a constant vector in {U∈Rd :
‖U‖=1; Ud=0}, then satis�es the boundary value problem (6). The corresponding solution
of the dual problem (23) is �∗=0 and the gradient (26) vanishes, so that S∗ is the opti-
mal boundary. Indeed, the uniform horizontal �ow is a solution of the steady free-surface
�ow problem.
Next, consider the perturbed boundary S∗

��. The solutions of the perturbed primal and dual
problem are expanded as

�∗
�� =U ·x+ ��′

�(x) +O(�2) (31a)

�∗�� =0+ ��′�(x) +O(�2) (31b)

If (31a) and (31b) are inserted in (6) and (23), respectively, and the normal vector to S∗
��

is expanded in the same manner as in (10), then collection of terms of O(�) reveals that the
induced disturbances are governed by:

��′
� =0; x∈V∗ (32a)
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ed ·∇�′
� =0; x∈@V∗\S∗ (32b)

ed ·∇�′
� =U ·∇�; x∈S∗ (32c)

and

��′� =0; x∈V∗ (33a)

ed ·∇�′� =0; x∈@V∗\S∗ (33b)

ed ·∇�′� =−U ·∇(U ·∇�′
� + Fr

−2�); x∈S∗ (33c)

Moreover, upon inserting (31) in (26), one obtains that the gradient corresponding to the
perturbed boundary S∗

�� reads

grad E(S∗
��)= � (Fr−2(U ·∇�′

� + Fr
−2�)−U ·∇�′�) +O(�2) (34)

Note that for any perturbation �, the induced disturbances follow from (32) and (33). The
gradient corresponding to the perturbed boundary can then be obtained from (34). Because
grad E(S∗)=0, important information about the Hessian can subsequently be extracted
from (28).
The analysis proceeds by assuming �; �′

� and �′� to be a linear combination of horizontal
Fourier modes. Because (32) through (34) are linear in �; �′

� and �′�, it su�ces to consider a
single mode. Denoting by k= k1e1 + · · ·+ kd−1ed−1 the horizontal wave-number, � is set to

�(x)= �̂(k) exp(ik ·x) (35)

with i=
√−1. The induced disturbances �′

� and �′� comply with (32) and (33), respectively, if

�′
� = �̂(k) exp(ik ·x) cosh(|k| (xd + 1)) (36a)

�′� = �̂(k) exp(ik ·x) cosh(|k| (xd + 1)) (36b)

and

|k| sinh |k| �̂(k) = ik ·U �̂(k) (37a)

|k| sinh |k| �̂(k) =−ik ·U(ik ·U cosh |k| �̂(k) + Fr−2 �̂(k)) (37b)

Recalling that grad E(S∗)=0, by (34) through (37), the change in the gradient satis�es

lim
�→0

1
�
[grad E(S∗

��)− grad E(S∗)]= Ĥ (k) �̂(k) exp(ik ·x) (38)

with

Ĥ (k)=
(
Fr−2 − (k ·U)2

|k| tanh |k|
)2

(39)

The object Ĥ (k) is referred to as the Fourier symbol of the Hessian.
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4.3. Properties of the optimization problem

The Fourier symbol of the Hessian contains important information about the posedness and
the solution behaviour of the optimization problem. To illustrate this, we consider the Fourier
transform of the perturbation �(x) and its inverse

�̂(k)= (2�)1−d
∫
S∗

�(x) exp(−ik ·x) dx; �(x)=
∫ ∞

−∞
�̂(k) exp(ik ·x) dk (40)

From (28) and (38) it then follows that∫
S∗

�(y)grad2E(S∗)(x; y) dy=
∫ ∞

−∞
Ĥ (k) �̂(k) exp(ik ·x) dk (41)

Hence, by (29), if terms of O(�3) are ignored, the change in the cost functional due to the
perturbation of the free boundary reads:

E(S∗
�� )− E(S∗) =

�2

2

∫
S

�(x)
∫
S

�(y) grad2E(S∗)(x; y) dy dx

=
�2

2

∫
S

�(x)
∫ ∞

−∞
Ĥ (k) �̂(k) exp(ik ·x) dk dx

=
�2

2

∫ ∞

−∞
Ĥ (k) �̂(k)

∫
S

�(x) exp(ik ·x) dx dk

=
�2

2
(2�)d−1

∫ ∞

−∞
Ĥ (k) �̂(k) �̂(k) dk

=
�2

2
(2�)d−1

∫ ∞

−∞
Ĥ (k) |�̂(k)|2 dk (42)

with �̂(k) the complex conjugate of �̂(k). Equation (42) implies that Ĥ (k) expresses the
ability of the optimization problem to distinguish between a boundary S∗ and a perturbed
boundary S∗

��, with �(x) a Fourier component with wave number k.
To illustrate the behaviour of the Fourier symbol Ĥ (k), we consider (39) for k∈R2 (i.e.

d=3). Without loss of generality, we assume that U= e1, so that k ·U= k1. Figure 1 then

displays contours of Fr−2±
√

Ĥ (k), e.g. if Fr = 1
2 , then Fr

−2±
√

Ĥ (k)=4 is the contour for

which Ĥ (k)=0 and Fr−2±
√

Ĥ (k)∈{0; 8} are the contours for which Ĥ (k)=16.
The solution behaviour of the shape optimization problem is determined by the critical

modes, i.e. the wave numbers for which Ĥ (k) vanishes. These critical modes yield a change in
the cost functional of just O(�3), instead of O(�2). Hence, a small perturbation of the uniform
free-surface �ow is composed of a linear combination of the critical modes. It is important to
observe that to each Froude number corresponds a curve of critical wave numbers. The critical
modes are associated with steady surface gravity waves; see, e.g. References [17, 19]. Note
that for d=2 (k2 = 0) and Fr¡1, the condition Ĥ (kc)=0 yields a unique relation between
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Figure 1. Contours of Fr−2±
√

Ĥ (k).

the wave number of the surface gravity wave and the Froude number. For d=2 and Fr¿1,
critical modes are absent and steady surface gravity waves do not occur.
The Fourier symbol of the Hessian also gives information about the posedness of the

optimization problem. The optimization problem is said to be well posed if it has a unique
solution that is stable to perturbations in the auxiliary data. Uniqueness is ensured if Ĥ (k)¿ 0
for all k. From the above considerations, it is clear that uniqueness cannot be ensured. How-
ever, this does not necessarily imply that the optimization problem is ill posed. It merely
implies that the behaviour of critical modes is not described by the above theory. Linear
stability of the optimization problem generally demands that

Ĥ (k)=O(|k|�); as |k|→∞ (43)

for some �¿0; see Reference [16]. This requirement expresses that the optimization problem
clearly notices high wave-number perturbations of the free boundary. Unfortunately, if k∈R2,
the contours on which Ĥ (k)=0 contain waves with |k|→∞. Hence, the linear theory is
insu�cient to establish the stability of the three dimensional free-surface �ow problem. How-
ever, such waves do not occur for d=2 and, therefore, linear stability of the two dimensional
optimization problem is ensured.

4.4. Stability of the adjoint method

To examine the stability of the adjoint method, we consider a perturbation S∗
�� of the

optimal free boundary S∗. One iteration of the adjoint optimization method yields a new

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:3–27



16 E. H. VAN BRUMMELEN AND A. SEGAL

approximation S∗
�� , with

��(x)= ��(x)− �grad E(S∗
�� )(x) (44)

for some step-size �¿0. Hence, by (30), � and � are related in the following manner:

�(x)= �(x)− �
∫
S

�(y)grad2E(S∗)(x; y) dy (45)

The contraction number � of the adjoint method is de�ned by the reduction of the error in
the free-boundary position between successive iterations, i.e.

�= sup
�

‖�(x)− �
∫
S∗ �(y) grad2E(S∗)(x; y) dy‖

‖�(x)‖ (46)

where the supremum is taken over all admissible functions �(x). Because ‖�‖6�‖�‖, stability
of the adjoint method is ensured if �61.
If the L2 norm is implied in (46), we can use (41) and Parseval’s identity to recast (46) into:

�= sup
�̂

(∫∞
−∞(1− �Ĥ (k))2 |�̂(k)|2 dk∫∞

−∞ |�̂(k)|2 dk

)1=2
(47)

If problem (7) is solved numerically, then the in�nite domain is usually truncated and �(x) is
represented on a grid. In that case, if ‘=(‘1; : : : ; ‘d−1) is the horizontal length of the truncated
domain and h=(h1; : : : ; hd−1) is the horizontal mesh width of the grid, then we only have to
consider isolated wave numbers in the set

Wh= {k : kj= n�=‘j; n= ± 1;±2; : : : ; |kj|6�=hj} (48)

see Figure 2 for an illustration. It follows from (47) that � is then given by

�= sup
k∈Wh

|1− �Ĥ (k)| (49)

Stability of the adjoint optimization method is ensured if the right hand side of (49) is at
most 1. This can be accomplished by choosing the step size � according to

�= c
(
sup
k∈Wh

Ĥ (k)
)−1

(50)

for some constant c∈ ]0; 2[.
The supremum of Ĥ in Wh is for well posed problems determined by the highest wave-

number components in Wh; refer to (43). From (48) it follows that the highest wave number
in Wh is O(1=|h|). Hence, in general, the step size diminishes as �=O(|h|�) as |h|→ 0. In
particular, for the Fourier symbol (39), if the grid is re�ned in such a manner that h= |h|c
as |h|→ 0, with c a constant vector, then the supremum of Ĥ (k) in Wh is O(|h|−2). The step
size must then comply with

�=O(|h|2) as |h|→ 0 (51)
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Figure 2. Illustration of the set of wave numbers Wh (dots) and Ĥ (k)=0, Ĥ (k)= 	1; 2.

to maintain stability of the oscillatory modes, i.e. the modes with large |k|. This implies that
the step size in the adjoint optimization method must be reduced as the spatial grid is re�ned
to maintain stability of the high wave-number components.

4.5. Convergence of the adjoint method

The convergence behaviour of an iterative method is usually characterized by its contrac-
tion number. However, this characterization is inappropriate for problems with critical modes
(Ĥ (k)=0) and dispersive behaviour, such as the considered free-surface �ow problem. The
contraction number is based on the behaviour of isolated waves, whereas for dispersive prob-
lems the behaviour of wave groups is relevant; see, e.g. References [17, 21]. This distinction
is essential if critical modes occur. As a result of the critical modes, the contraction number
indicates that convergence lacks. However, due to the dispersive properties of the problem,
this indication is too pessimistic.
To determine the convergence behaviour of the adjoint optimization method (A1)–(A4), we

reconsider the perturbation S∗
�� of the optimal free boundary S∗. The Fourier components of

the perturbation can be separated into a contribution 
̂(k) of the modes in the neighbourhood
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18 E. H. VAN BRUMMELEN AND A. SEGAL

of the critical modes and a remainder:

�̂(k)= 
̂(k) + (�̂(k)− 
̂(k)) (52a)

where 
̂(k)= ŵ(k) �̂(k),

ŵ(k)=

{
1 if Ĥ (k)6	1
0 if Ĥ (k)¿	2

(52b)

and 	1;2 are constants such that 	2¿	1¿0; see the illustration in Figure 2. The transition of
ŵ(k) from 1 to 0 can be constructed in any suitable manner and is largely arbitrary. However,
below 
̂(k) is required to be an analytic function.
Denoting by ��n(x) the disturbance in the free-boundary position after n iterations of the

adjoint method, we obtain from (41) and (45):

�̂n(k)= (1− �Ĥ (k))n�̂(k) (53)

Hence, it follows from (52) that

�n(x)=
∫ ∞

−∞
(1− �Ĥ (k))n
̂(k) exp(ik ·x) dk+O(|1− �	1|n) (54)

Because |1 − �	1|¡1, the remainder vanishes exponentially as n→∞. This implies that the
asymptotic behaviour of �n(x) for large n is determined by the Fourier components in the
neighbourhood of the critical modes.
From (54) it follows that if 
̂n(k) is de�ned recursively by


̂0(k) = 
̂(k) (55a)


̂n(k) = (1− �Ĥ (k))
̂n−1(k); n=1; 2; : : : (55b)

then �n(x)∼
n(x) as n→∞. Equation (55b) can be recast into:

̂n+1(k)− 
̂n(k)

�
+ Ĥ (k) 
̂n(k)=0 (56)

Note that for su�ciently small �, the �rst term can be conceived as a di�erence approxima-
tion to the derivative of 
̂n(k) with respect to pseudo time n�. We assume that 
̂n(k)∼ exp
(�n�)
̂0(k) as n→∞. Equation (56) then implies

(exp(��)− 1)=�+ Ĥ (k)=0 (57)

Taylor expansion of exp(��) yields

�= − Ĥ (k) (58)

provided that O(�2) terms are negligible. By (52b), Ĥ (k)6	2. Hence, if 	2 is chosen su�-
ciently small, the O(�2) terms in the Taylor expansion can indeed be ignored. Equation (58)
relates the pseudo time behaviour of a disturbance in the free-boundary position to its spatial
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behaviour. Therefore, it appears appropriate to refer to (58) as the dispersion relation of the
adjoint method.
From (54) to (58) it follows that as n�→∞,

�n(x)∼
∫ ∞

−∞

̂(k) exp(i�(k) n�) dk (59)

with

�(k)= iĤ (k) +
k ·x
n�

(60)

The integral in (59) vanishes exponentially as n�→∞, except near stationary critical points
of Ĥ (k), i.e. the wave numbers k0 such that

Ĥ (k0)=0;
@Ĥ
@kj

(k0)=0 (61)

Each stationary critical point yields a contribution


̂(k0)
(
2�
n�

)(d−1)=2(
det

∣∣∣∣∣ @2Ĥ
@ki@kj

(k0)

∣∣∣∣∣
)−1=2

exp(ik0 ·x+ i�) (62)

with � a multiple of �=4, depending on the properties of @2Ĥ =@ki@kj. The above can be proved
by the method of stationary phase; see, e.g. References [21, 22].
Due to the quadratic form of (39), any critical point is a stationary point as well. Hence,

if we de�ne the evaluation error en by the L2 norm of the error in the boundary position,
i.e. en ≡‖��n‖, then we anticipate that the adjoint method yields the following asymptotic
convergence behaviour:

en =O(�n�) if ∀k : Ĥ (k)¿0 (63a)

en =O((n�)(1−d)=2) if ∃k : Ĥ (k)=0 (63b)

as n→∞, for some constant � in ]0; 1[. The implications of (63) for the convergence behaviour
of the adjoint method are summarized in Table I.

Table I. Convergence behaviour of the adjoint method: asymptotic behaviour of the
evaluation error en for sub- and supercritical �ow in 2D and 3D, with n the iteration

counter, � the step size and � a constant in ]0; 1[.

d=2 d=3

Subcritical O(1=
√
n�) O(1=(n�))

Supercritical O(�n�) O(1=(n�))
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20 E. H. VAN BRUMMELEN AND A. SEGAL

5. PRECONDITIONING

The asymptotic error behaviour (63) and the stability condition (51) imply that the per-
formance of the adjoint optimization method deteriorates with decreasing mesh width. This
de�ciency of the method can be repaired by means of preconditioning. This section outlines
the preconditioning operation.

5.1. Reconsideration of objectives

To introduce the preconditioning operation, we consider the gradient of the cost functional
at a perturbation S∗

�� of the optimal boundary S∗. By (38), the Fourier components of the
gradient read:

[grad E(S∗
��)(k)= � Ĥ (k) �̂(k) (64)

Equation (64) implies that for problems that are stable according to (43) with � strictly
positive, the gradient primarily contains highly oscillatory modes (large |k|). Consequently,
the adjoint optimization method e�ectively reduces the cost functional by removing the highly
oscillatory disturbances in the boundary position. However, smooth error components are
inadequately resolved.
In general, one is interested in obtaining the free-boundary position rather than minimizing

the cost functional. If the objective is indeed to obtain the free boundary, then the gradient
is unsuitable for adjusting the boundary position.

5.2. General outline

The aim of preconditioning is to restore the relation between the boundary adjustment and the
error in the boundary position. An accurate approximation to the error in the free-boundary
position can be recovered from the gradient by solving

P
=grad E(S∗
��) (65)

where P is any convenient operator of which the Fourier symbol satis�es

Ĥ (k)6 P̂(k) for all k (66a)

lim
|k|→∞

Ĥ (k)=P̂(k) =C; for some C ∈ ] 0; 1] (66b)

The operator P simulates the relation between the gradient and the disturbance in the boundary
position. The Fourier components 
̂(k) are related to the components of the disturbance by


̂(k)= (Ĥ (k)=P̂(k)) �̂(k) (67)

Therefore, 
(x) is an accurate approximation to �(x) if Ĥ (k)=P̂(k)≈ 1.
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If the adjoint method uses 
(x) instead of the gradient to displace the free-boundary, then
the corresponding stability condition reads:

|1− � Ĥ (k)=P̂(k)|61 (68)

Requirement (66a) ensures that Ĥ =P̂61 for all k, so that the step size � in the preconditioned
method can be set to 1. Consequently, if the problem is solved numerically, the convergence
behaviour of the preconditioned method is independent of the mesh width of the applied grid.
Condition (66b) makes certain that all Fourier components that are present in the boundary
disturbance are also present in the correction, so that the error indeed vanishes as the iteration
progresses.
It is important that the numerical methods for solving (65) do not reintroduce the mesh-

width dependence. In general, preconditioners P can be constructed for which e�cient solution
methods, e.g. multigrid methods [23, 24], are available.

5.3. A preconditioner for 2D free-surface �ows

The construction of the preconditioner from its symbol relies on the theory of pseudo-
di�erential operators; see also Reference [25]. In this section we set up a preconditioner
for the 2D steady free-surface �ow problem. It is anticipated that a preconditioner for 3D
free-surface �ows can be constructed similarly.
In two dimensions, the free-boundary is one dimensional and the considered wave number

is k ∈R. Without loss of generality, we assume that the velocity is scaled such that U =1
in (39). To derive the preconditioner, we �rst consider the asymptotic behaviour of (39) for
large k:

Ĥ (k)∼ k2; as k →∞ (69)

The Fourier symbol −k2 corresponds to a Laplace operator. An operator which has the desired
behaviour for high wave number components is

PH 
=(Fr−2 − 1)2
 − @2

@t2

(70)

where @=@t denotes the tangential derivative along the free boundary. The Fourier symbol
of (70) is

P̂H(k)= (Fr−2 − 1)2 + k2 (71)

Indeed, P̂H(k)∼ k2 as k →∞. Figure 3 compares the Fourier symbols P̂H and Ĥ . The be-
haviour of P̂H closely resembles that of Ĥ at high wave numbers. Hence, PH accurately recov-
ers highly oscillatory errors in the boundary position. Moreover, PH eliminates the mesh-width
dependence of the step size.
The Fourier symbols P̂H and Ĥ di�er markedly at low wave numbers if Fr¡1. For Fr¡1,

the low wave-number behaviour of Ĥ is accurately approximated by:

P̂L(k)= (1− (2− 2�)(k=k0)2 + (1− �)(k=k0)4) (Fr−2 − 1)2 (72)
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Figure 3. Fourier symbols P̂L(k), P̂H(k) and Ĥ (k) for Fr =
√
tanh(�)=�.

with k0 the critical wave number of (39) and � a small positive constant; see Figure 3. The
symbol P̂L(k) corresponds to the di�erential operator

PL
=(Fr−2 − 1)2
(

+

2− 2�
k20

@2

@t2

+
1− �
k 40

@4

@t4

)
(73)

The constant � ensures that the polynomial P̂L(k) has no real roots. This is a prerequisite
for stability of the preconditioner. Unfortunately, it also implies that the preconditioner leaves
the root of Ĥ undisturbed, i.e. Ĥ (k)=P̂L(k)=0 for critical modes. Hence, the asymptotic
convergence behaviour (63b) is not essentially improved.
Summarizing, for supercritical �ows an e�ective correction of the free-boundary can be

obtained from (65) and (70). The mesh-width dependence of the convergence behaviour is
then eliminated. For subcritical �ows, the correction is a combination of a high wave-number
correction 
H from (65), (70) and a low wave-number correction 
L from (65), (73), e.g.
(
L + 
H)=2. The mesh-width dependence of the convergence behaviour is then removed.
However, the asymptotic convergence behaviour is not improved, because the preconditioning
does not remove the critical modes.

6. NUMERICAL EXPERIMENTS

The preconditioned adjoint optimization method is tested for two dimensional sub- and super-
critical �ow over an obstacle in a channel of unit depth at Fr =0:43 and 2.05. The geometry
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of the obstacle is

y(x)=−1 + 27
4

H
L3

x(x − L)2; 06x6L (74)

with H and L the (non-dimensionalized) height and length of the obstacle, respectively. We
choose H =0:2, L=2 for the subcritical test case and H =0:44 and L=4:4 for the supercritical
test case, in accordance with the experimental setup from Reference [26]. In addition, we
consider the subcritical test case with H =0:1, L=2 and the supercritical test case with
H =0:22 and L=4:4.
The boundary value problems (7) and (23) are discretized with bilinear �nite elements.

The di�erential operators in the gradient (26) are discretized with central di�erences. The
resulting discrete optimization problem is unstable and displays odd/even oscillations. These
are simply removed by smoothing the gradient with the biharmonic operator. For subcritical
�ows (Fr¡1), a radiation condition must be imposed to avoid non-physical upstream waves;
cf. Section 2.1. The upstream waves are eliminated by smoothing the gradient upstream of
the obstacle with the Laplace operator, and by applying the low wave number preconditioner
PL only downstream.
The numerical experiments are performed on grids with horizontal mesh width h∈{L=36;

L=72} and vertical mesh width 1
24 . For the supercritical test case, the correction is computed

using (65) and (70). For the subcritical test case, the upstream correction is determined in
the same manner and the downstream correction is taken as (
L + 
H)=2, with 
H from (65),
(70) and 
L from (65), (73). The constant � in (73) is set to 0:025. In all cases the step size
�=1 is employed.
For the supercritical test case, Figure 4 plots the L2 norm of the correction after n iterations,

‖
n‖, versus the iteration counter. The correction behaves as ‖
n‖=O(�n), for some constant
�∈ ]0; 1[. The norm of the evaluation error after n iterations can be bounded by

en6
∞∑
j=n

‖
j‖ (75)

It follows from (75) that the evaluation error converges as O(�n) as well. This is in ac-
cordance with the entry in Table I. From Figure 4 we obtain �≈ 0:35 for H =0:22 and
�≈ 0:5 for H =0:44. One may note that the convergence behaviour is indeed independent
of the mesh width. Figure 5 compares the computed surface elevation with measurements
from Reference [26] for the supercritical test case. The computed result agrees well with the
measurements.
For the subcritical test case, ‖
n‖ is plotted versus n in Figure 6. Note that Figure 6 is

a log–log plot. In this case, ‖
n‖ behaves as O(n−�), with �≈ 1:5 for H =0:1 and �≈ 1:2
for H =0:2. It follows from (75) that the convergence behaviour of the evaluation error is
approximately O(n−0:5) for H =0:1 and O(n−0:2) for H =0:2. Hence, the test case with
H =0:1 con�rms the entry in Table I. The deteriorated converge behaviour for H =0:2 can
be attributed to apparent non-linear behaviour. One may note that the convergence behaviour
is virtually independent of the mesh width. Figure 7 compares the computed surface eleva-
tion with measurements from Reference [26] for the subcritical test case. The surface eleva-
tion displays typical non-linear e�ects, such as sharp wave crests and wave-length reduction.
The amplitude of the computed result is overestimated. However, the overestimation of the
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Figure 4. Supercritical test case: norm of the correction versus the iteration counter for
H =0:22 (A) and H =0:44 (B) (h=L=36 and h=L=72 coincide).
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Figure 5. Supercritical test case: computed surface elevation with H =0:44 and h=L=72
(solid line) and measurements from Reference [26] (markers only).
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Figure 6. Subcritical test case: norm of the correction versus the iteration counter for
H =0:1, h=L=36 (A), h=L=72 (B) and H =0:2, h=L=36 (C), h=L=72 (D).
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Figure 7. Subcritical test case: computed surface elevation with H =0:2 and h=L=72 (solid
line) and measurements from Reference [26] (markers only).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:3–27



26 E. H. VAN BRUMMELEN AND A. SEGAL

amplitude of the trailing wave is not unusual; see, for instance, References [8, 27, 28]. The
wavelength of the computed result is in good agreement with the measurements.

7. CONCLUSIONS AND DISCUSSION

We investigated the suitability of the adjoint optimal shape design method for solving steady
free-surface �ows. To this end, the free-surface potential-�ow problem was reformulated
into an equivalent optimal-shape design problem. We then presented the adjoint optimization
method for solving the design problem. We determined the asymptotic convergence behaviour
of the adjoint method for sub- and supercritical �ows in 2D and 3D. Moreover, we showed that
preconditioning is imperative to avoid mesh-width dependence of the convergence behaviour
and we presented a suitable preconditioner for the free-surface �ow problem.
Numerical results were presented for two dimensional �ow over an obstacle in a channel.

The observed convergence behaviour is in agreement with the asymptotic estimates, i.e. the
evaluation error behaves as O(�n) for the supercritical test case and as O(n−1=2) for the
subcritical test case. Moreover, the numerical results con�rm that the convergence behaviour
of the preconditioned adjoint method is independent of the mesh width. For both test cases
the computed results agree well with measurements.
The convergence behaviour of the adjoint shape optimization method for steady free-surface

�ows is for two dimensional problems similar to that of time-integration methods (see also
Reference [8]): the error converges as O(�n) for supercritical �ows and as O(n−1=2) for sub-
critical �ows. For three dimensional problems, the anticipated convergence behaviour of the
adjoint method is O(n−1) for sub- and supercritical �ows. The convergence behaviour of
time-integration methods is O(n−1) for subcritical �ows and O(�n) for supercritical �ows.
The convergence behaviour of the preconditioned adjoint method is independent of the mesh
width, whereas the convergence behaviour of the usual time-integration method deteriorates
with decreasing mesh width, due to a CFL-restriction on the admissible time step. Therefore,
the preconditioned adjoint method is expected to be more e�cient than time-integration meth-
ods, except in the case of 3D supercritical �ow. However, for 3D �ows and 2D subcritical
�ows, the convergence behaviour of the adjoint method is less e�cient than the mesh-width
independent O(�n) convergence behaviour of the method presented in Reference [8].
The O(n−1=2) (2D, subcritical) and O(n−1) (3D) convergence behaviour of the adjoint

method is caused by the critical modes. It is therefore anticipated that a combination of the
adjoint method and a solution method that e�ectively eliminates the critical modes yields
O(�n) convergence behaviour.

ACKNOWLEDGEMENTS

This work was performed under a research contract with the Maritime Research Institute, Netherlands.

REFERENCES

1. Farmer J, Martinelli L, Jameson A. A fast multigrid method for solving the nonlinear ship wave problem with
a free surface. In Proceedings of the 6th International Conference on Numerical Ship Hydrodynamics, Iowa,
1993.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:3–27



ADJOINT SHAPE OPTIMIZATION FOR STEADY FREE-SURFACE FLOWS 27

2. Alessandrini B, Delhommeau G. Simulation of three-dimensional unsteady viscous free surface �ow around a
ship model. International Journal for Numerical Methods in Fluids 1994; 19:321–342.

3. Campana E, Di Mascio A, Esposito PG, Lalli F. Viscous-inviscid coupling in free surface ship �ows.
International Journal for Numerical Methods in Fluids 1995; 21:699–722.

4. Saito H, Scriven LE. Study of coating �ow by the �nite element method. Journal of Computational Physics
1981; 42:53–76.

5. Sackinger PA, Schuck PR, Rao RR. A Newton-Raphson pseudo-solid domain mapping technique for free
and moving boundary problems: A �nite element implementation. Journal of Computational Physics 1996;
125:83–103.

6. Tsai W, Yue DKP. Computation of nonlinear free-surface �ows. Annual Review of Fluid Mechanics 1996;
28:249–278.

7. Raven HC. A Solution Method for the Nonlinear Ship Wave Resistance Problem. Ph.D. thesis, Delft University
of Technology, Netherlands, 1996.

8. van Brummelen EH, Raven HC, Koren B. E�cient numerical solution of steady free-surface Navier–Stokes
�ow. Journal of Computational Physics 2001; 174:120–137.

9. Zhu S, Zhang Y. On nonlinear transient free-surface �ows over a bottom obstruction. Physics of Fluids 1997;
9(9):2598–2604.

10. Silliman WJ, Scriven LE. Separating �ow near a static contact line: Slip at a wall and shape of a free surface.
Journal of Computational Physics 1980; 34:287–313.

11. Fursikov AV, Gunzburger MD, Hou LS. Boundary value problems and optimal boundary control for the Navier–
Stokes system: the two-dimensional case. SIAM Journal on Control and Optimization 1998; 36(3):852–894.

12. Becker R, Braack M, Rannacher R. Adaptive �nite element methods for �ow problems. Technical Report
IWR/SFB-Preprints 2000-20, Ruprecht-Karls-Universit�at Heidelberg, 2000.

13. Giles MB, Pierce NA. Adjoint Equations in CFD: Duality, Boundary Conditions and Solution Behaviour.
AIAA: New York, 1997; 97–1850.

14. Gunzburger MD, Kim H. Existence of an optimal solution of a shape control problem for the stationary Navier–
Stokes equations. SIAM Journal on Control and Optimization 1998; 36(3):895–909.

15. Gunzburger MD, Lee HK. An optimization-based domain decomposition method for the Navier–Stokes
equations. SIAM Journal of Numerical Analysis 2000; 37(5):1455–1480.

16. Ta’asan S. Theoretical tools for problem setup. In Inverse Design and Optimization Methods, van den
Braembussche RA, Manna M (eds). VKI Lecture Series, vol. 5, Von Karman Institute for Fluid Dynamics,
1997.

17. Lighthill MJ. Waves in Fluids. Cambridge University Press: Cambridge, 1978.
18. Stoker JJ. Water Waves: the mathematical theory with applications. In Pure and Applied Mathematics. Courant

R, Bers L, Stoker JJ (eds.) Wiley: New York, 1992.
19. Lamb H. Hydrodynamics (6th edn). Dover: New York, 1945.
20. Pironneau O. Optimal shape design for elliptic systems. In Computational Physics. Cabannes H, Holt M, Keller

HB, Killeen J, Orszag SA (eds.) Springer: Berlin, 1984.
21. Whitham GB. Linear and nonlinear waves. In Pure and Applied Mathematics. Wiley: New York, 1974.
22. Zauderer E. Partial Di�erential Equations of Applied Mathematics. In Pure and Applied Mathematics (2nd

edn), Bers L, Hilton P, Hochstadt H, Lax P, Toland J (eds.) Wiley: Chichester, 1989.
23. Ta’asan S. Multigrid one-shot methods and design strategy. In Inverse Design and Optimization Methods, van

den Braembussche RA, Manna M (eds). VKI Lecture Series, vol. 5, Von Karman Institute for Fluid Dynamics,
1997.

24. Brandt A. Multigrid techniques: 1984 guide with applications to �uid dynamics. Technical report, GMD, 1984.
25. Ta’asan S. In�nite dimensional preconditioners for optimal design problems. In Inverse Design and Optimization

Methods, van den Braembussche RA, Manna M (eds). VKI Lecture Series, vol. 5, Von Karman Institute for
Fluid Dynamics, 1997.

26. Cahouet J. Etude Num�erique et Experimentale du Probl	eme Bidimensionnel de la R�esistance de Vagues Non-
Lin�eaire. Ph.D. thesis, ENSTA, Paris, 1984 (In French).

27. Tzabiras GD. A numerical investigation of 2D steady free surface �ows. International Journal for Numerical
Methods in Fluids 1997; 25:567–598.

28. Vogt M. A numerical investigation of the level set method for computing free-surface waves. Technical Report
CHA/NAV/R-98/0054, ISSN 1101-0614, Chalmers University of Technology, 1998.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:3–27


